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Abstract—Relatively simple stress—strain equations are developed for nonlinear, initially isotropic, viscoelastic
materials with constant temperature, and are shown to agree quite well with the actual behavior of unfilled
and filled polymers. First, equations for a general state of strain are derived by extending Biot’s linear thermo-
dynamic theory to a restricted class of nonlinear behavior. Only two time-dependent relaxation functions appear,
and these are just the familiar linear viscoelastic relaxation moduli. The general relations are then specialized to
stress-strain equations applicable to uniaxial loading, radial and axial deformation problems of long, circular
cylinders, and simple shear with lateral strain. The uniaxial equation yields, as a special case, a nonlinear relaxa-
tion modulus that has the familiar form for polymers wherein strain and time-dependence appear as separate
factors. Results of experiments on highly-filled polymers are compared with theory for cases in which very
small shear vibrations are superposed on static lateral compression and on static shear. Strong nonlinearities
are observed with static strains of only a few percent.

INTRODUCTION

IT 1S WELL-KNOWN that many unfilled and filled polymeric materials exhibit significant
nonlinear viscoelastic behavior over a wide range of strains, strain rates, and temperatures
encountered in certain technological applications. Composite systems consisting of soft
polymers highly filled with hard particles, such as solid propellant, may have strongly
nonlinear stress—strain response even at strain levels of only a few percent, as shown in
this paper, and, for example, [1]. This appears to be due, in large part, to separation
(dewetting) of the soft matrix from the hard filler particles in the presence of strain; the
extent of this dewetting, and therefore nonlinearity, depends on the state of strain and its
history. As a result, linear viscoelasticity theory may be severely limited in its application
to systems whose hard-solids loading density is near its maximum value.

In this paper we shall develop relatively simple viscoelastic stress—strain equations
which are suited especially for treating strong material nonlinearities, and then compare
some experimental and theoretical results for solid propellants; no theoretical limitation
is placed on strain magnitude. These equations are derived by extending Biot’s linear
thermodynamic theory [2] to a restricted class of nonlinear behavior. Consequently, our
approach is considerably different from that followed by other workers. (For a discussion
of the various theories see, for example, [3, 4]).

In an earlier paper by the author [5] it was pointed out that a relatively simple non-
linear theory could be developed by assuming viscoelastic material behaves thermo-
dynamically as a linear viscoelastic system, but with nonlinear measures of strain in
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place of the classical linear strains and with modified stresses. As an example, the stress—
strain equation for uniaxial loading was derived and shown to be consistent with large-
strain relaxation data for several polymers. Specifically, this theory yielded the familiar
relaxation modulus form wherein strain and time dependence appear as separate factors.

In the present paper, this theory is extended to general multiaxial loading of materials
which are isotropic in their unstrained state. In addition, we admit a more general type
of nonlinearity; it allows for nonlinear behavior under equilibrium (elastic) conditions
which is different from that occurring under nonequilibrium conditions, and also includes
a strain-reduced time analogous to temperature-reduced time for thermorheologically
simple materials. These latter generalizations appear to be needed in the stress—strain
equations of highly-loaded solid propellant.

The stress—strain equations so developed will be seen to be a natural generalization
of the Boltzmann superposition principle to nonlinear, multiaxial behavior, and to
contain two strain-independent relaxation moduli; only one relaxation modulus appears
for materials that can be assumed to have a constant (or infinite) bulk modulus in the
linear range of behavior. Because of our thermodynamic approach, these equations
reduce to the most general, thermodynamically admissible forms for the limiting cases of
linear viscoelasticity and nonlinear elasticity, and are consistent with thermodynamics
for general strain histories.

In Section 1, pertinent thermodynamic equations derived earlier [2, 5] are reviewed
and then extended to nonlinear behavior in terms of generalized coordinates and forces.
Stress-strain equations for a general three-dimensional state of strain are given. In
Sections 2 through 5 stress-strain equations for specific strain states are deduced, and
then compared with some experimental results.

1. THERMODYNAMIC CONSIDERATIONS

The viscoelastic material is considered to be a closed thermodynamic system which
is maintained at a constant temperature. Its state is assumed to be defined by (n) state
variables ¢; (generalized coordinates), withi = 1,2, ... n. A generalized force Q;, conjugate
to the variable g;, is defined by the condition that Q,d¢; is an incremental amount of
external work done on the system, where J¢; denotes an incremental change in g;.

The generalized coordinates will be divided into the two groups of hidden and ob-
served. Hidden coordinates are defined by the condition that their conjugate forces are
always zero, while the remaining coordinates are called observed variables. Although it is
not necessary, for our purposes, to provide a physical interpretation for hidden co-
ordinates, one can interpret some of them as being “molecular configurations” when
dealing with polymers. On the other hand, a physical association must be made for
observed variables in each application. For example, when a general state of uniform
small strain is applied to a linear viscoelastic element of unit volume, one may take as
observed variables the six components of the symmetric strain tensor; the conjugate
generalized forces are the six components of the stress tensor.

Review of previous results

The general system defined above is governed by the following set of (n) equations of
motion when in the neighborhood of an equilibrium state [5],
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—+2b,,dt =Q; i=12..n (1)

where F is the Helmholtz free energy, and the coefficients b;; form a symmetric, positive
semidefinite matrix as a consequence of Onsager’s principle and the non-negative property
of entropy production; in general, these coefficients may be functions of the generalized
coordinates g;.

In earlier studies [2, 5] the free energy F was expanded about an unstressed and un-
strained reference state, and all terms higher than second order were neglected; viz. the
quadratic form

1 n
F=3 Y a4d; ¥3]
i,j=1
was used, where
0*F
S= g o= | ——— . 3
%= G (aqiaqj)AllqEO )

Also, the matrix of viscosity coefficients, bj;, was assumed constant, apart from thermal
effects. These considerations reduced nonlinear system (1) to the set of linear equations,

jZ a4;+ Z bu = O @)

where b;; is the value of b;; in the unstramed equilibrium state. Explicit relations between
observed coordinates (strams) and generalized forces (stresses) were then derived by
eliminating the hidden coordinates; this was accomplished by using the fact that @, = 0
for all indices corresponding to hidden coordinates.

Although the resulting linear stress—strain relations are applicable to media with an
arbitrary degree of anisotropy, we shall record here for reference purposes just the familiar
isotropic relations. They can be written in the following form:t

2 t d ~t d
o= gj.o G(t—f)a‘;[z‘h—‘h—qs]d‘”'“ . K(t—T)d—:dT (5a)
2 d (* d
Qz=§soc(t"f)a[292_41-¢13]df+“ OK(t—f)d_:dT (5b)
2 o de
Q5= —j. G(t— T)—[Z‘ls 4,—q;}dt+ K(““)adT (5¢)
Jo

Q‘=j Gt~ 1:) dt, Q5=j‘ G(t— r)d"’dr, Q6=J. G(t—z)%‘?fdr (5d)
(o]

0
where e = ¢, +4,+4,, and G(t) and K(t) are the shear and bulk relaxation moduli,
respectively. These moduli are restricted by thermodynamics to have the exponential form

+ The equivalence of relations (5) and the operational form in [5] can be established by taking the Laplace

transform of (5) and then relating the transformed bulk modulus to operational analogs of the Lamé elastic
constants.
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Gl(t) = G+ Y, G exp(— Agd) (6a)
K@) = K.+ Y K, exp(— 4. (6b)

where the constants have the property G, >0, K, >0, G, >0, K, >0, and 4, > 0.
A delta function, 4{t), is thermodynamically admissible in (6), but is omitted here on
physical grounds. Also, all variables g; are assumed to vanish when t < 0.

The generalized variables in (5) are to be identified with stresses and strains referred
to Cartesian coordinates (x, y, z) as follows:

Q, = o,; Q, =0, Q3 =o0,; Q4 = Tyy; Qs = Txs; Qs = 1,, (72)
9 =6; =8, 4g3=8&; qa=7Yx d5=7Ys:> d6= 7y (7b)
in which the familiar notation in [6] is used.

Extension to nonlinear behavior

It is important to recognize that equation (1) is not restricted to a neighborhood of the
unstrained equilibrium state, but should be applicable as long as the system is close to any
equilibrium state. Namely, if the imposed strain rates are not too high, it is reasonable to
assume that equation (1) is valid almost regardless of the strain magnitudest ; it also seems
reasonable to expect that the strain rate restriction will be practically the same as exists
for infinitesimal strains, except possibly when failure is imminent.

Although equation (1) may be applicable, it is not practically useful unless the hidden
coordinates can be eliminated so as to obtain explicit relations between forces and ob-
served coordinates. We shall show that by introducing certain restricted forms of the free
energy function and matrix b};, the hidden variables can be easily eliminated, and that these
restricted forms yield stress—strain equations which are (approximately) consistent with
experimental data for filled and unfilled polymers.

Before introducing these restricted forms, it is of interest to make a comment con-
cerning hidden coordinates, as this will serve to motivate further the choice of these
restrictions. Specifically, let us first assume that each thermodynamic equilibrium state
of the body depends on only observed variables. Then, without loss of generality, the
hidden coordinates can be chosen so as to vanish at all equilibrium states.} If, for example,
the body is strained very slowly so that thermodynamic equilibrium is maintained at
each instant, these hidden coordinates remain at zero. Moreover, under nonequilibrium
conditions these coordinates will be small if strain rates are sufficiently small, even
though the applied strains (or observed variables) may be large enough to produce non-
linear behavior.

This observation indicates that it is meaningful, although strains may be large, to
expand the free energy with respect to the hidden coordinates and neglect terms higher
than second order. Moreover, it turns out that one can partially simplify the free energy
with respect to observed coordinates also, and still obtain results which are consistent
with a large amount of experimental data. Namely, we shall use the free energy expansion,

+ We are using “‘strain” rather loosely here, but will give specific definitions later in each application.

1 Had we picked a set of hidden coordinates which, say, vanishes only in the unstrained equilibrium state,
their values at all other equilibrium states would depend on the applied strains. By subtracting from the instan-

taneous value of each of these coordinates their equilibrium value, one obtains differences which represent the
hidden coordinates chosen in the above text.
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F=AF,+% ) a;;9:49; (®)

ij=1

where g;; are the constants given in equation (3); AF, is a function of only the observed
coordinates, which is at least of third order in g;. At an equilibrium state, the free energy is
given by

k

F=F, =AF,+3 Y a;44; 9
iL,j=1
where it is assumed that there are k observed coordinates (1 <i < k,1 < j k).

Equation (8) represents a second-order approximation to free energy, apart from the
value of free energy at equilibrium states; i.e. we have retained a completely general form
of the free energy when under equilibrium conditions. Also, it should be emphasized
that the observed variables reduce to strains when they are sufficiently small, but in
general may be nonlinear functions of strains.

Note that if g;; are assumed to depend on observed coordinates, expansion (8) will not
involve any approximation with respect to these coordinates. A special form of this
dependence is discussed in [7].

Considering now the matrix b;;, it will be assumed that

ijs

bi; = acb;j; a, >0 (10)
where a, depends on only observed coordinates (or strains) and b;; is the same constant
matrix appearing in (4). The function g, will be called a “strain shift-factor™ since it is
analogous to the familiar “temperature shift-factor” a;[S]. It is observed that a, = 1 in
the unstrained state. Experimental results to be given later indicate that such a shift
factor is needed to achieve agreement with theory.

Upon substituting free energy (8) and the matrix (10) into equation (1), one finds the
equations of motion:

dq; OAF,
Z i+ Z gy = (n
where pisa “strain«reduoed time,” deﬁned by
t
d,o:‘:—g or pEJ g (12)
(3 0 as

and Q, = 0 and 9AF,/0q; = 0 when k+1 < i< n.

Comparing equations (11) and (4), we see that solutions to (11) may be deduced imme-
diately from solutions of the original linear set (4). Specifically, for a body which is iso-
tropic in its unstrained state, equations (5) and (6) are applicable if we replace Q; by
Q,—0AF ./0q; and real time by strain-reduced time (12). These modified equations repre-
sent a set of constitutive equations for three-dimensional, nonlinear viscoelastic behavior.
In order to obtain explicit stress—strain equations one must relate the generalized forces
to a stress tensor, and this association is made in the Appendix for a particular choice of
strains.

For a general state of strain it is seen that there are only two relaxation moduli
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(which are the same as those occurring in the linear range of behavior), seven strain-
dependent functions g, . . . g6, AF,, and the strain-dependent shift factor a,. However, one
can often expect to encounter considerable difficulty in applying these constitutive equa-
tions to specific problems and to simple configurations which are used in material pro-
perty evaluation. Normally, it will be much easier to derive the constitutive equations for
each application or class of problems of engineering interest; a convenient set of pertinent
strains can be chosen for each case, without having to start with all six components of the
strain tensor.

We shall illustrate this by deriving in the following two sections an equation for uni-
axial loading of a bar, and then the stress—strain equations applicable to the analysis of
symmetrically loaded, long cylinders.

2. STRESS-STRAIN EQUATION FOR UNIAXIAL LOADING

Consider a cubic specimen whose sides are unity in the undeformed and unstressed
state. Let o be a force applied normal to a face so as to develap a uniform, uniaxial state
of stress, and let A be the length of the sides parallel to the force direction; we shall call
¢ = A—1 the strain.

For this case there is only one observed generalized coordinate, q,(¢), say, and one
generalized force, @,. In view of the assumptions in Section 1, the relation between
generalized force and coordinate is the same as for linear viscoelastic behavior, apart
from the addition of a, and AF,; thus, for an initially isotropic body,

dAF,
Q= dg,

' N
+J E(p p)dT dr (13)

0

where E(p) is the uniaxial relaxation modulus, and p is strain—reduced time defined in
equation (12). Also, p' = p(7).
The virtual work is
d
SW = ade = Q,0q, = Q‘Tiqs_l‘ss' (14)
Hence
_ dq,
c=0Q, I (15)

and from equation (13) we derive the stress—strain equation,

_ dAF, dq, ‘ ~ 949,
=i +dejoEQo p)—&?dr. (16)
Defining the equilibrium, small strain modulus as E, = E(o0), equation (16) can be written
_dF, dg,f N 1941
o= a +a‘j0[E(P“P)—Ee]—&?dT an

where F, is the total free energy (strain energy) in equilibrium,
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F, = AF,+3E.¢3. (18)

For sufficiently small strains q, = &, so that AF, is at least third order in &. If AF, can be
neglected, q; may be determined directly from the elastic strain energy,

2F,
q =\/(‘Ee_) (19)

which corresponds to the result in {5].

Observe that there are three strain-dependent functions, F,, q,, and a,, appearing in
(17), and one time-dependent function, E(t). From the limit cases of nonlinear elastic
and linear viscoelastic responses one can obtain the strain energy function F.(g) and
relaxation modulus E(z).

In order to compare equation (16) with some experimental results, let the strain be a

step-function of time,
0; t<0
£ = (20)

&g; t>0
where ¢, is constant. Equation (16) yields

__dAFe_'_
T ode 2

and p = t/a,. If one considers the special case AF, = 0 and a, = 1, equation (21) yields
the familiar product form observed for polymers [8, 9] On the other hand, propellant
data given in Section 5 for another state of strain indicate that we must take into account
variations of AF, and a,. The unfilled polymer data obtained by Mason[10] also suggests
that a, is needed, at least with very large strains.

Finally, it should be clear that the form of the stress—strain equation (16), or (17),
is the same as would be obtained for any case in which there is a single observed variable,
such as equal biaxial strain or simple shear; it is necessary to replace only the relaxation
modulus E(p) by the appropriate linear viscoelastic relaxation modulus.

1dqi

o 3 B @1

3. STRESS-STRAIN EQUATIONS FOR ANALYSIS OF LONG CYLINDERS

For engineering stress analysis purposes, case-bonded solid propellant grains are often
approximated by infinitely long, hollow, circular cylinders. Under isothermal conditions,
two types of axially symmetrical loading of particular interest in propellant problems are
internal pressurization and axial acceleration. In this section we shall give a sufficient set
of stress—strain equations for calculating displacement and stress distributions (apart
from the axial stress) for such loading and configurations.

The viscoelastic cube shown in Fig. 1 may be interpreted as an infinitesimal element
which has been cut from a cylinder; the x,, x,, x5 directions correspond to the radial,
circumferential, and axial directions, respectively. Without loss of generality, we may
assume that the sides have unit length in the unstrained state.

The state of strain is assumed to be homogeneous and defined by three quantities:
&1, &2, and y,. &, and ¢, are displacements between the faces whose normals are paraliel
to the x, and x, axes, respectively; y, is equal to the displacement in the x;-direction of
the top surface relative to the bottom surface. The length of line elements in the x4 direction
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F16. 1. Viscoelastic element and coordinate system.

are assumed constant. ¢,, 64, and 15 are the corresponding normal and shearing forces

per unit undeformed area (i.e. stresses referred to the unstrained state).

Since three independent “strains” are used to describe the class of deformations of
interest, we introduce three generalized coordinates, g{¢,, ¢;, y3) with i = 1, 2, 3. Their
conjugate generalized forces satisfy the virtual work conditions,

oW = Q,8g,+Q,8q9,+ Q3693 = 0,08, + 0,06, +73075

for arbitrary variations d¢;, d¢, and 5y3. Therefore

aq, 0q;
Q1 26, +Q2 % +Q3— 7e,

€y
_n %1, 992 04;
02 - Ql 682+Q2 652+Q3 682

8‘12
Ql 6 QZ a,})

For sufficiently small strains, assume

0q;
Q3 a}’3 M

& =45 £ = {»: V3 =43

so that for this limit case

=0 o, = Q5 T3 = Q3.

Following the theory in Section 1, the relations between generalized coordinates
and forces are determined directly from the limit case of linear viscoelastic behavior,

apart from aq, and AF,. Thus,

OAF, 2
Q: =

OAF, 2
Q, =

e ' ’ d ' de
7, +3j0 G(p—p)dt[qu-qﬂdHL Klp—p)y - d

' d
o gj Glo—p) 3 120~ qddr+j K05

22)

(23a)

(23b)

(23c)

(24a)

(24b)

(252)

(25b)
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oAF, (! ~dg;
Qs = s +jo Glp p)g;dt (25¢)
where ¢ = q,+¢,, and G(p) and K(p) still denote the linear viscoelastic shear and bulk
relaxation moduli, respectively.

Substitution of relations (25) into (23) will yield the desired stress—strain equations.
However, before doing this, it is helpful to simplify equation (25) by introducing the
familiar assumption that the bulk modulus is constant. We should emphasize that this
implies the material is elastic with respect to volume changes in the linear range only;
volume viscoelasticity arising from nonlinear phenomena, such as dewetting of solid
propellant, is not excluded. With this simplification, the stress—strain equations become

oF, 20q, d
01 = 6’81+3 6qj [G(p—p)— ]a[z‘h“%]df
+§~—Z§3j (6o p)~G.] - 20~ ql}mi—j (6o -G Bdr (6
€1l
oF, 20
0= +3a22 (6o~ p)~Go) 124, ~ g e
0
oq
+§Zij (6o~ )~ G o 242~ ql}dwg—f (Glo—0)-GI de  asb)
€20
oF, , 2 o, , d
=g qj (Gl -)-61 - 201 -asl e
+-§%"—j (6o~ p)~G.] o= 24, ~ qlldr+‘2—j [6o—0)~G.] e, (260)
Yl o

We have introduced the equilibrium value of shear modulus, G, = G(w0), in order to
write (26) in terms of the equilibrium free energy (strain energy) F, = F {ey, &5, 73)

Since the body is assumed to be isotropic in its unstrained equilibrium state, the
functions F,,a,, q,, and g, are even functions of y;, while g5 is an odd function of y;;
this can be shown to follow from the fact that ¢, and ¢, must be even in y, and 15 odd in
y3. Furthermore, when y; = 0 an interchange of the x, and x, axes should not affect the
form of the stress—strain law, which implies the symmetry properties:

F (&1, €3,0) = F (&5, 8,,0); ale;, €5, 0) = afe; £, 0) 27
q1(81, €2, 0) = q,(e2, 81, 0)

4. SMALL VIBRATIONS SUPERPOSED ON STATIC STRAIN

This section deals with application of the theory to two problems involving very small
sinusoidal shear strain superposed on uniform static strain. Predictions of the equations
derived here will be compared to experimental results in the following Section 5.
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Shear vibrations superpesed on lateral strain

Consider again the element shown in Fig. 1, but now assume that it is in a state of
planc strain in the x, direction; ie. ¢, = 0. The stress—strain equations can be deduced
from (26) by setting g, = 0,

- .a...lj_ ﬂ_a_g_l_ n_ dQI iq_; ! n_ dqa
oy = 3, +3 % j [Glp—p)—-G.] i dt+681j [G(p~—p") Ge]—a—{dr (28a)
5F 4 8q1 ) dq, 593

where

F, = Fle,v3), @, = ae1,73), 41 = q4(ey,73), and g3 = qs(&y, v3).

It should be observed that equations (28) could have been derived directly from
thermodynamic equation {11) by using only two observed variables, ¢, and ¢,, without
having to consider q,. This latter generalized coordinate is not needed unless one deals
directly with the more general equations (26), in which case ¢, = 0 does not necessarily
imply g, = 0. (Note, however, that g,(¢;, 0, y5) has no first-order terms because of the
small-strain condition g, = g,). Whether or not g,(g;, 0, y,) vanishes in general cannot be
determined without further experiments; for the present problem of small superposed
vibrations, it can be shown that equations (26) and experimental data in Section 5 are
consistent regardless of the value of g,(¢;, 0, y4).

The variables g, and q; satisfy the same conditions stated in Section 3. Specifically,
4, = &, and g3 = y; when [¢,] <€ 1 and |y,} < 1. Also, F, and ¢, are even in y, and ¢; is an
odd function of y;. In the following analysis, it will be helpful to use g5 in the form,

g3 = 3l +73f+ e8] 29

in which we have introduced arbitrary functions of ¢; and y3:f = f(¢,, y3) and g = g(e,, y3).

Suppose now that a finite, constant strain &, = ¢, is applied and maintained in-
definitely. After the element has relaxed to a steady state of stress, apply a small harmonic
shear strain, y; = y, expliwt), with amplitude y, < 1 and frequency w. The terms in (28)
can be approximated as follows:

oF, (@F, _[oF,
de, (681) 93=0 = (681)s (30a)
OF M)
exepyie= | 30b
ay3 L?3 (ay nyo ( }
0
A3y yteg g, =g, 0) (30¢)

dys

Also, both integral terms in (28a) and the first integral in (28b) either vanish or are negli-
gible. The second integral term in (28b) becomes

0
aj:j (66 ~p)~ 61 %2 de = (1 +6£)%G*~ Gy 61
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where G* is the complex linear viscoelastic shear modulus,
G* = G(wa)+iG"(way):i= /-1 (32)

in which G’ is the “storage modulus” and G” is the *‘loss modulus”; these moduli are
functions of only “reduced frequency,” wa,.
With these considerations, one derives the stress—strain equations,

g, = ( ?::)s (33a)
13 = Gy = (G, +iG})ys (33b)
in which the components of the nonlinear complex modulus, G¥, are
G. = [c—(1+eg)*G. 1+ (1 +£,8)*G (34a)
G! = (1+¢g,)°G". (34b)

It is interesting to observe that the nonlinear storage modulus, G,, consists of a
frequency-independent term, [c—(1+£,,)?G,}, and a frequency-dependent term that is
similar to the nonlinear loss modulus, G;. It will be seen later that this character of the
nonlinear complex modulus, as well as its dependence on reduced frequency, wa,, can
be used as a direct experimental check on validity of the theory.

Shear vibrations superposed on static shear strain

Let us now derive the stress—strain equation for the element in Fig. 1 whene, = ¢, =0
and

73 = 75+ |Ays| expliot) = y,+ Ay, (35

where 7, is a static shear strain and |Ay,| is a very small vibration amplitude.
For this case, we have to consider just one observed generalized coordinate,
43 = q3(y3), which is related to shear force per unit undeformed area, z;, by the equation

dF, dq, ' dq;
= +—\ [G(p—p)—G.]——=dr 36
a7, st.L (p=p)=Gel - (36)

T3

which has the same form as uniaxial equation (17).
Substitution of shear strain (35) into (36) yields the incremental stress—strain equation,

Aty = GYAy; = (G, +iG})Ay; 37
where 1, is assumed constant prior to applying Ay,, and
dF
Aty = 14— £ 38
3= T3 ( &7, ),, (38)
d?F, dq3)2 ] (dq3)2
G, = =) Gl +|—) & 39a
’ [( d)’% )y. (d)’a s dys/,, (3%)

dq, 2
GI/ E 19 ”
’ ( dh)y’G (39b)
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in which G' = G'(wa,) and G” = G"(wa,) are the familiar components of the linear visco-
elastic complex modulus. All strain-dependent functions noted are evaluated at y; = y,.

It is seen that nonlinear moduli (39) have the same form as those with static lateral
strain, equation (34), and consequently will permit a further check on the theory.

From an experimental stand-point, it will not always be convenient to wait until a
steady state of stress is reached before applying the cyclic strain. The nonlinear storage
moduli (34a) and (39a) are found to contain a time-dependent term which must be con-
sidered in the presence of simultaneous stress relaxation.

5. DISCUSSION OF EXPERIMENTS AND RESULTS

We now turn to a discussion of experiments* using the specimen shown in Fig. 2.
and make a comparison of data with nonlinear moduli (34) and (39). The objective of
these tests was not to carefully evaluate material properties, but rather was to obtain a
preliminary evaluation of the theory. In fact, only a single specimen was used for each of
the two loading conditions.

RIGID
g, PLATES

X3
~_ A" proPELLANT
w

-

T

L v

FiG. 2. Shear specimen.

The specimen dimensions were approximately L = 0-50 in., H = 0-13in., and W = 0-34
in. With these dimensions the load—displacement response of the specimen is influenced
somewhat by the free surfaces, which were not accounted for in deriving the stress—strain
relations. However, in view of our objective, this is not significant; for the usual case in
which G/K < 1, application of the thermodynamic theory for arbitrary values of L, H,
and W yields force—displacement relations that have the same form as stress—strain
equations (28) and (36).

The vibration test apparatus that was used has been described in detail elsewhere [11].
It employs a piezoelectric driver which, in the present tests, subjected the specimen to a
shear strain amplitude of 6 x 10™2 per cent over the frequency range of 20-1000 c/s.

Shear vibrations superposed on lateral strain
The specimen used for this case was an 84 wt.%;-loaded polybutadiene acrylic acid
(PBAA) propellant. (Greatest loading possible is approximately 90 per cent).

* The experiments were conducted by Mr. Dalton Cantey of Lockheed Propulsion Company, Redlands,
California.
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The measured nonlinear storage modulus, G(w), and loss modulus, G}(w), are illus-

trated in Fig. 3 using logarithmic scales (log = log,,). (Note that the static strain was
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either compressive or zero in this test). Especially interesting is the strong nonlinearity
that is seen to exist even though this lateral strain is relatively small.

According to equation (34bj, the G curves in Fig. 3 should form a continuous curve
of G"(wa,) by translating them vertically an amount log(l +¢,g,)?, and horizontally an
amount log a,. Figure 4 shows the result of these translations; all five G, curves blend
together within graphical accuracy. Similarly, the quantity {G,—[c—(1+¢g,)?G.]}/
(1 +¢,g,)? should form a continuous curve of G'(wa,), in which the denominator and a, have
been obtained previously by shifting the G, data. Superposition of the storage modulus
curves is seen to be quite good, with the maximum deviation from the ¢, = 0 curve being
seven per cent. Graphically determined pertinent values are given in Table 1.

TaABLE |
Compressive strain, —é, a, c—(1+£,8,)°G, P
0A {psi)
1 0

26 074 70 -346

52 035 228 —520

78 018 508 —-616
104 010 962 —-635

We should point out that the small difference between reduced storage modulus
curves in Fig. 4 can be removed by a slight adjustment of the values in this table. How-
ever, this change leads to reduced loss modulus curves which do not blend together as
well as indicated in Fig. 4.

Shear vibrations superposed on static shear strain

In this case, a specimen made of 88 wt. %-loaded carboxy-terminated polybutadiene
propellant (CTPB) was used. (Greatest loading possible is approximately 90 per cent).

Figure 5 shows the measured complex modulus components, which are seen to be
quite sensitive to the static shear strain. If the theoretical moduli (39) are valid, this
data should superpose in the same way as the moduli with lateral compression. However,
it is clear from the figure that G curves cannot be shifted to form a single curve. Never-
theless, the storage moduli values do superpose very well, as shown in Fig. 6. Graphically
determined values are given in Table 2. The g, values were estimated by trial-and-error
such that the loss modulus values would blend together at the lower frequencies.*

Although the nonlinear loss moduli for this very highly-loaded propellant do not
superpose very well, especially at the higher frequencies, equation (36) may still be a valid
approximation for some other strain histories; this follows from the good superposition
exhibited by the storage modulus, and the fact that for many materials the relaxation
modulus and storage modulus are practically identical [12]. However, further study is
certainly needed in order to determine the range of validity of equation (36) for this
material.

* Recall for the previous case of lateral compression that the shift-factor was determined by superposing
loss moduli, and a trial-and-error procedure was not needed.
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As a final item of interest, the data in Table 2 enable us to determine whether or not
the third and higher order portion of the free energy, AF,, can be neglected. First, observe

that F, = AF,+ G.q3/2; hence

dqg;\? d2AF, d?q,
b E) + G, 40
(dh) a3 Tap® “0
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TaBLE 2
Static shear strain, y, (dZFe) (dq3)2 G dq3)
b/ 4, i e N
(%) a3/, \dns ), dys/,,
{psi)
0 10 0 1-0
16 07 300 1412
31 06 700 117
63 06 1300 1-25
94 06 2100 130
12-5 06 2700 133

For this material, the equilibrium shear modulus is G, ~ 200 psi, and values of g;d?q;/dy3
can be estimated from dg,/dy; in Table 2. Upon comparing terms in (40) one finds, over
most of the strain range covered in this test, that AF, must not only be retained, but
actually provides the greatest contribution to the frequency-independent portion of the
nonlinear storage modulus, G).

6. CONCLUDING REMARKS

Irreversible thermodynamics has been used to derive nonlinear stress—strain equations.
Comparison of theoretical resuits with experimental data shown herein, and with some
data obtained by others, indicates that the proposed equations are applicable to highly
viscoelastic media with strong material nonlinearities. It was shown that a simple graphi-
cal method can be used to evaluate strain-dependent material functions and to check
validity of this theory.

Considering the fact that data presently available on any given material are very
limited in the nonlinear range, there is a major need for further critical experiments in
order to establish the range of validity of the theory. In this connection, it is believed that
experiments involving harmonic strain, similar to those discussed in this paper, provide
an especially critical check on theory since two interrelated response quantities (ie.
amplitude and phase angle) are obtained. Of course, additional strain histories, such as
constant finite strain step and constant strain rate should be applied in order to further
check accuracy of the theory in predicting response in the nonlinear range.

On the basis of the similarity between the linear and nonlinear forms of the consti-
tutive equations in generalized notation, it is possible to represent the nonlinear equations
by mechanical models consisting of springs and dashpots. This point is discussed further
in [7], where the present theory is extended to include transient temperatures and thermo-
mechanical coupling.
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APPENDIX
Relation Between Generalized Forces and the Stress Tensor

We choose as strains the covariant components of the strain tensor y;; [13] referred
to a convected set of coordinates (0, 8, 0,); these are called sometimes the Lagrangian
components of strain [14], and are quantities that define completely the state of defor-
mation of each material element, independently of rigid body motion. Equation (7) is not
applicable with nonlinear behavior, but the appropriate generalized force and stress
relations can be determined from a virtual work condition.

To accomplish this, we first introduce the single index notation,

Pl = 1.11. P2 = 122. P3 = T.'33' P4 = ,r12. PS = 113. P6 = TZ3 (413)
C1=711582 = 722583 = 7335 €4 = 29125 85 = 29135 86 = 2723 (41b)

where ¥/ are components of the contravariant stress tensor [13] referred to (0, 6,. 05).
Assuming that the volume of the body is unity in the unstrained state, and that it is
strained homogeneously, the virtual work 6Wis [13]-

G 6
oW =\/ (——\) Z Piéi,- 42)
g/i=1

where g and G are the determinants of the covariant metric tensors of the unstrained and
strained bodies, respectively. For arbitrary variations d¢;

/) m- 50

i, j=1

0
P \/( )ZQJa? (44)

where, for an initially isotropic body with initially Cartesian coordinates,*

Thus,

*The derivative (d/d1) 1s defined as a time derivative for fixed values of the convected coordinates (8,, 8,, 95).
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0 -7 +-§- Glp~p) o= Cay —qz—qs)dr+j; Ko-p)3de @2

0, = 9;j—+§ o9 g 03-01 =45 de | Ko-s)3de  @sb)

0= 5 +§ G0 gz Cas— a1 =0 e+ ;K(p—p')gfdr (450)

0, = a§qF+j Glo-p) Bdr; 05 = aAi’+I;G(p—p’)qu:dr;

0. -5 +J Glp—p) 2 4 sd)
pzjloj—:; p= ;gf; g=1 (45¢)

The equilibrium free energy term AF, and the shift-factor a, are functions of the three
strain invariants only; the generalized coordinates must reduce to strains for sufficiently
small strains, but, in general, will be isotropic tensor functions {3] of the strain tensor.

In deriving equation (44), we have been careful to define stresses and strains in terms
of a coordinate system that moves with the body. Also, the strains (41b) are nonlinear
functions of displacement, and are valid regardless of the amount of deformation. How-
ever, as a practical point, there will be cases for which material nonlinearities exist but
geometric nonlinearities can be neglected ; i.e., when deformations are small enough that
no distinction betweeh coordinates in undeformed and deformed states is needed, and
the strain—-displacement relations can be linearized. Under these circumstances, one can
set (g/G) = 1 in (44) and use as stresses and strains the familiar ones appearing in [6].

(Received 6 August 1965)

Résumé—Des équations relativement simples de tension—deformation on été développées pour des matériaux
viscoélastiques, non linéaires, initialement isotropes 4 une température constante, et démonstration a été faite
qu'ils peuvent s’accorder assez bien avec le comportement réel des polyméres remplis ou non-remplis. Tout
d’abord, des équations pour une condition générale de contrainte sont dérivés en étendant la théorie thermo-
dynamique linéaire de Biot 4 une catégorie restreinte de comportement non-linéaire. Seulement deux fonctions
de relaxation tributaires du temps apparaissent, et celles-ci sont les modules familiéres de viscoélasticité linéaire.
Les relations générales sont alors spécialisées aux équations de résistance—effort applicables aux chargements
uniaxes, aux problémes des déformations radiales et axiales de cylindres longs, circulaires et de simple cisaille-
ment avec contrainte latérale. L’équation uniaxiale produit, comme cas spécial, un module de relaxation non-
linéaire qui poss¢de la forme familiére pour les polyméres dans lesquels la contrainte et la dépendance au temps
apparaissent comme des facteurs différents. Les résultats d’expériences sur des polymeres hautement remplis
sont comparés avec la théorie pour les cas dans lesquels des vibration de cisaillement trés 1égéres sont superposées
a une compression latérale statique et sur un cisaillement statique. De fortes non-linéarités sont notées avec un
léger pourcentage de contrainte statique.

Zusammenfassung—Relative einfache Spannungs-Dehnungsgleichungen wurden fiir nichtlineare, anfingliche
isotrop viskoelashschi Materialien mit bestdndiger Temperatur entwickelt und stimmen sehr gut mit dem
tatsiichlichen Verhalten von ungefiiliten und gefiiliten Polymern iiberein. Erstens, Gleichungen fiir einen allge-
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meinen Zustand der Spannung, werden bei Erweiterung der Biot-linearen wiirmemechanischen Theorie, zu
¢iner beschriinkten Klasse von nichtlinearen Verhalten abgeleitet. Es erscheinen nur zwei zeitabhiingige Entspan-
nungs Funktionen, und diese sind gerade dic wohlbekannten linearen viskoelastischen Module. Die allge-
meinen Bezichungen sind dann zu Spanpungs-Dehnungsgleichungen spezialisiert, anwendbar fiir einachsige
Belastung, radiale und axiale Verformungsprobleme von langen, kreisformigen Zylindern und einfachen Schub
mit seitlicher Beanspruchung. Die cinachsige Gleichung ergibt, als ein besonderer Fall, einen nichtlinearen
Modul, welches die wohibekannte Form fiir Polymer hat, in welchem Beanspruchungen und Zeitabhingigkeit
als getrennte Faktoren erscheinen. Ergebnisse von Versuchen an hochgefiillten Polymemn werden mit der
Theorie von Fillen verglichen, in welchen sehr kleine Schubschwingungen an statischen seitlichen Kompression-
en und an statischen Beanspruchungen iiberlagert sind. Starke Nichtlinearitiiten werden mit statischen Deforma-
tionen von nur wenigen Prozenten beobachtet.

AGCTpAKT—BuIBEACHBl OTHOCHTE/IBHO NMPOCTHIE YPABHEHAS ‘‘HANPAKCHUA-ACPOPMALIMK’’ JUIA HENHHEHHBIX
NEPBOHAYATILHO HIOTPONHLIX, BA3KOYNPYIHX MaTepHANIOB C MOCTORHHOM Temnepatypoll u noxasaHo, yro
OHM COBEDILEHHO COMJIACYIOTCA ¢ AeHCTBHTENBLHLIM MOBEACHHEM MONHMEPOB C HanosHurenaMu ¥ Bes
HanonHuTenel. Bo-mepBbix, ypaBHenus ofiero cocroanus nedOpMALMH BHIBOAATCH PACHPOCTpPAHEHHEM
nunelinoit repmonuaaMuveckoit Teopuu Buota (Biot) Ha OTPAHHMCHHYIO TPYINY HETHHEBHOTO NMOBCACHHR.
BoigBnAoTCA TONBKO ABE, 3aBUCALIHE OT BpeMEHH QYHKUBH PENAKCAUHK M OHH NMPEACTABNAIOT M3 cels
HMMEHHO XOPOUIO M3BECTHRIC JIMHEHHBIC BAKOYNPYIHe PeJakCauMOHHbie MonymH. O6uiue COOTHOLICHNS,
3aTeM, OTPAHKYMBAIOTCA YPABHCHHAMHM HAUPAKCHMSA-NCHODMALIMM, NPUMCHHMBIMH INPH OJHOOCHOM
HArpyXeHuH, NPH DafHaNbHLIX H OCesniX npobnemax achopMauMK UTHHHBIX, KPYTOBHIX LHAHHADOB K
NPOCTOTro cadura ¢ nonepeudoft nedopmauneft. ONHOOCHOE YpaBHEHHE TOANAETCS, KAK CHCUHANbHBLIE
ciyvalt, HeNMHHEHHOMY DEIAKCAUHOHHOMY MOAYJIIO, KOTOPHIH ofnamaeT xopowio HisecTHo# dopmolt ans
NOJIMMEPOB, B TO BPeMA, KK AeGOPMAUKA M 3aBHCHMOCT OT BPECMEHH NPEACTABAAIOT W3 Ce0A OTACNbHbIE
dakTops, Pe3yasTATE OIMTOR C HOMHMEPAMH C BHICOKHM COUCPXAHUEM HANOIHHTENR CPABHHBAIOTCH C
TeopHell IR CyYacs, B KOTOPLIX BHOpAUMH OveHb MAJOIO CABHIa COBMEIHAIOTCH CO CTATHYCCKHM HOme-
PEMHBIM CXATHEM U CO CTATHMECKHM ciasurom. BonsMas HenuneluocrS nabmomaercd ANIH CTATHYECKHX
IepopManHK KOTOPbIE TONKKO HECKONBKO HPOLEHT.



